Silver smelting at Rio Tinto 2500 years ago

It has long been accepted that mining at Rio Tinto goes back to Phoenician times and that in later years the district was a principal source of the metal wealth of the Roman empire. Nevertheless, the greater part of the early history of the area is unknown. The exploration being carried out by the Huelva Project is concerned in investigating the earliest mining development and in building up a picture of the communities which in ancient times clustered around the mines. The teams include representatives of Spanish universities, the Institute of Archaeology in London, and the British Museum Research Laboratories.

Last summer, most work again took place on the northern slope of Cerro Salomon — the mountain that dominates the Rio Tinto complex — where a huge build-up of slag was cut by open-cast workings of the modern Corta Lago mine. In the 1978 season of exploration, the area had been cleared and investigated in order to sample and date the many layers of waste material which were believed to hold the secrets of the metallurgical history of the area. Last year the expedition’s main endeavour was to determine when, and by whom, the earliest metal was produced. Altogether, 110 different layers were separated and identified, of which 16 were excavated over an area of about 100 square metres.

From these investigations it is apparent that the area of Corta Lago was originally an open-air smelting site for ores that were mined from higher up on the mountain. Here, silver was already being produced in the Late Bronze Age, probably as early as the 8th-7th century BC. The smelting technique was of a surprisingly high standard and included the use of large, stone-built furnaces with tapping facilities; technologically, such operations had apparently reached their optimum in this period, and were certainly not improved upon during the Roman occupation.

Other finds support the expedition’s contention that this early silver-producing industry was developed by local Iberian people. It is possible that their industry was the source of much of the silver which enriched the Tartessians, whose culture was based on till ing the rich soils of the river plains of the surrounding countryside and extracting minerals from the hills. It was the Tartessians’ prosperity that first drew the Phoenicians to trade with this part of the world at the time the Bronze Age was beginning to be replaced by the Iron Age, and their commerce was financed with ever-increasing quantities of this locally-produced silver. Whether the Phoenicians subsequently participated in the production operations, or whether they merely continued as traders, is not yet known, but it is hoped that further investigations, planned to be made in 1980-81, will provide the answer.

More than 8 metres of stratification on top of the Iberian workings, showing many layers of slag and architectural remains, testify to a large-scale mining and smelting enterprise under the Roman occupation. During this period, from the 1st century BC to the 2nd century AD, in addition to large quantities of silver, some copper and iron were also produced in the Corta Lago district. However, it is presently assumed that the main copper-producing area of this, and perhaps an earlier, period was along the banks of the Rio Tinto to the north and west of the modern mining area, and this too will come under investigation in 1980-81.

Western Europe’s Earliest Mine

Chinflon, a small but highly significant copper-producing site, was discovered in 1974 west of El Pozuelo, which is well known for its malachite remains. In 1978, clearance of one of the mining systems was begun and work continued last year.

The excavated mine was evidently opened up in the Chalcolithic-Early Copper Age and not developed in any other period, though a similar system nearby has a typical Late Bronze Age shaft with footholds carved into the sides by metal chisels; it is however considered that this shaft was used for prospecting, rather than for copper production which came from primitive shafts following the rich malachite vein. Numerous grooved mining picks of the earliest known type were discovered inside and around the shafts.

Slag nodules, scattered over a wide area, represent the earliest copper smelting technology known to date, the process being carried out with intentional fluxing with iron-oxide. The exact smelting site has not yet been located, but it is assumed that the furnaces used were of the bowl-shaped, hole-in-the-ground type which was common elsewhere in this period.

Whilst there is still much work to be done at Chinflon, the discoveries are already of great importance in that
they represent the earliest mining and smelting operations yet evidenced in Western Europe, pre-dating previous finds in the Harz mountains of Germany by many hundreds of years. Moreover, remains of habitation have also been found and a direct relationship between the mines and the nearby dolmens of El Pozuelo has been established by pottery finds and other archaeological evidence. It can thus be assumed that these megalithic structures were in fact used for the burial of the dead of the mining communities. It is also of significance that the dolmens, the earliest-known structures of Europe, spread northwards across the continent through Portugal, Brittany and beyond the English Channel into Cornwall and Ireland, everywhere following the line of long-established mining activities.

The Arabah Project

New discoveries reveal second period of Egyptian mining

A second period of Egyptian mining in the Wadi Arabah, the broad valley that divides Israel from Jordan between the Dead Sea and the Gulf of Elat-Aqaba, has been established as a result of the most recent archaeo-metallurgical investigations in the area.

Ten years ago, discoveries by teams led by Professor Rothenberg finally proved that this area was the site of a copper mining and smelting enterprise by the Egyptians in the 19th and 20th Dynasties (c.1300 to 1150 BC). These activities, centred on the Timna Valley, on the western side of the Arabah, were carried out on a very large scale and could have represented the world’s first major “copperbelt”. The Egyptians ran the industry with the help of local tribes, including Midianites and other seminomadic people; production spanned at least 200 years and was an integral part of Egypt’s economic development during this period. The industry declined only when the power of Egypt declined about the middle of the 12th century BC and the expatriate miners left for home.

Until a few months ago there was no evidence that they ever returned; in fact it was widely believed that on their departure the Arabah quickly reverted to its previous state of being a desert no-man’s land, and that it remained so for nearly 1500 years until the Romans marched in to garrison the territory and revive its industry in the 2nd century AD.

However, a more detailed survey of the whole of the Arabah, which was begun last year under Professor Rothenberg’s direction, indicates strongly that mining was resumed under Egyptian control, probably in the 9th century BC when Egypt reoccupied some of its Eastern provinces.

Further investigations will be made this year in an effort to obtain more information about ancient Egypt’s second big mining enterprise in the Arabah.

Smelting by Computer

Meanwhile, experiments are continuing to gather more precise details of the various copper smelting processes employed by the ancients. These experiments involve the reconstructions of furnaces and simulating their operation with local ores and fluxes.

As an additional aid, a mathematical model has been prepared and a computer programme is being drawn up which will eventually cover the whole history of smelting operations from the primitive hole-in-the-ground furnace to the most sophisticated equipment in use today. It is expected that the first smelting experiments using computerized information will begin later this year; they will mark the first occasion on which computer technology will have been applied to ascertain the details of an earlier technology that has its roots many thousands of years ago.

Origins of Iron Production

During the past year, more-detailed investigation has been possible into the origin of the iron which was used to produce some of the votive offerings found in Timna’s Egyptian temple. The temple, which was excavated by Professor Rothenberg and his team in 1969, was dedicated to the goddess Hathor, and its well-preserved inscriptions and cartouches provided absolute dating for the period of Egyptian mining in this area. Many of the 10,000 small but precious finds recovered from the temple were, not surprisingly, of copper, but there was also a wide variety of finger-rings and other jewellery made of iron, some beautifully gilded.

The period in which these objects were produced was the Late Bronze Age, and although iron had by then come into limited use as a precious metal, it was a long time before it was to be smelted for its own sake and to begin to replace copper and bronze for implements and weapons. How it first came to be extracted from its ores has therefore remained much of a mystery.

Timna has now provided an answer.

Analysis of the iron from which the votive offerings were made showed a copper content that was much too great for the material to have been derived from the ore that was known to be available in the district. Subsequent experiments indicated that this iron was a by-product of the local copper smelters. Among the fluxes used in the smelting process was iron-oxide which, in the reducing atmosphere of the furnaces was produced as metallic iron, thus providing a high iron content in the copper. In laboratory tests, the iron content was removed and found to be wrought iron, which could easily have been fabricated to produce the sort of objects found in the Timna temple.

Thus it has been proved -- in the Arabah at any rate -- that the origins of iron smelting lay in the ancient copper furnace, and that the metal which came to