Rio Tinto

continued from page 4

long, where jaroisites — the silver-rich ore sought by the ancients — could still be seen on its walls. This cave-mine, located at the bottom of the gossan head, penetrated the secondary enrichment zone of the pyrite deposit. It is quite possible that it was originally part of the famous Cueva del Lago, a silver mine dating to the Late Bronze Age (12th-9th century BC), most of which has already disappeared into the jaws of modern bulldozers.

The entrance to the cave is only 100-200 metres from the early mining settlement which grew up around the spring, and its discovery could provide the answer to the question how miners of 3,000 years ago recovered silver hidden beneath gossan more than 50 metres from the surface. It now seems likely that they — or even generations of miners before them, belonging to the Argar culture (of which much evidence is to be found in nearby Nerva) — drove into the side of the mountain, creating cavers which early literature has described as being "as big as churches" and full of silver ore.

Last season’s investigations of slag heaps has provided clear evidence of Rio Tinto’s silver production going back to the days of the Tartessians. These Late Bronze Age metallurgists already used a sophisticated smelting technology which was not substantially improved upon until Roman times. Contrary to previous assumption, the Phoenicians did not import any new technology, and it seems doubtful if they ever reached Rio Tinto at all; the "Phoenician pottery" found in the area is now thought to have reached there as containers for merchandise, the Phoenicians being essentially traders.

After the Tartessian-Late Bronze Age beginnings, local Iberian traditions and technology of metal production continued throughout the first millennium BC, developing in, and radiating from, the settlement around the Corta Lago spring. By the time of the takeover of the Rio Tinto mines by Imperial Rome, smelting installations and slag heaps covered an area of several square kilometres. It was only then — in the 1st century AD — that the indigenous methods of metal production were replaced by improved technologies of silver-copper-iron extraction.

Next season’s work at Rio Tinto will be mainly concerned with an investigation of dwellings and other ancient buildings. In particular, excavation is planned of a Roman town, built on top of the silver slag, which could also have been a centre of administration for extensive copper mining.

It is also considered that a strange-looking earth mound, not far from the modern mine, and first noticed by local hunters, could conceal a dolmen of the 4th millennium BC, and this, too, will be excavated.

Investigations at Rio Tinto are under the auspices of Madrid University (Professor Antonio Blanco-Freijero) and sponsored by Rio Tinto Zinc Minera, Madrid.

---

Publications

B. Rothenberg, The Mining Sanctuary of Timna, is at present with the printers.

IAMS Monograph Number One, Rothenberg-Tylecote-Boydell, Chalcolithic Copper Smelting, is still available from Thames and Hudson, 30-34 Bloomsbury Street, London WC1, or directly from IAMS London office. The monograph series is shortly to be continued with a report on excavations of the ancient mines of Chinhlon (SW Spain).


A first review of the Sinai explorations 1967-1978 by the Arabah Expedition, affiliated to IAMS, is published by Kummerly & Frey, Bern, Switzerland: B. Rothenberg — H. Weyer, Sinai, Pharaohs, Miners, Pilgrims and Soldiers, (also in French and German editions).

Papers on Timna metallurgy by Prof. H.G. Bachmann and Dr. P. Craddock, members of the IAMS research group, and by Prof. B. Rothenberg on Chinhlon are published in Scientific Studies in Early Mining and Extractive Metallurgy, British Museum, Occasional Papers, No. 20 (obtainable from British Museum, Great Russell Street, London WC1B 3DG).

Prof. R.F. Tylecote’s Metallurgy in Archaeology, which has become a standard text book and has been out of print for many years, is to be republished in a revised and enlarged edition in 1984. This will be followed by a further work on metallurgy in prehistoric Europe in 1986.

---

Chinese excavate ancient copper mine

A recent publication of the Chinese Relics Publishing House, Beijing, recounts the history of the Tonglushan mine, in the ancient State of Chu, on the Yangtze River.

Tonglushan is the biggest of all Chinese ancient copper mines so far excavated, and the one with the longest production record. Four hundred thousand tons of ancient slag have been found on the site, together with several hundred vertical shafts and drifts of different structures, and 25 smelting furnaces of various dynasties.

Tools found dating to before the 6th century BC include wooden shovels, rakes and hammers, bronze adzes, chisels and pickaxes. With these simple implements, miners excavated shafts and drifts as deep as 50 metres and solved the problems of timbering, ventilation, drainage and illumination.

The Tonglushan mine was in production nearly 3,000 years ago and it has been estimated that 80,000

continued on page 8
IAMS invited to probe Cyprus metal secrets

A small team of archaeo-metallurgists, led by Professor Beno Rothenberg, is to undertake a preliminary survey in Cyprus next May for an IAMS project to explore for the earliest mines on the island.

The survey is to be carried out on an invitation from the Cyprus Department of Archaeology following an international conference on the island last February. Attending this conference on behalf of IAMS were Professors Rothenberg, Tylecote and Bachmann.

Cyprus is one of the world's traditional sources of copper, the metal having been produced there extensively for several thousands of years; it was the main attraction for successive waves of Egyptians, Assyrians, Phoenicians, Greeks, Persians and Romans. The island's copper was particularly important to the Roman Empire, the material being known as aes cyprium — "ore of Cyprus" — later corrupted to cuprum, from which comes the English name, copper.

Whilst a considerable amount of investigative work has been done on the Roman remains, which include vast slag heaps, there is little authentic knowledge of the island's metallurgy earlier than the Late Bronze Age though copper was being mined and smelted there on quite a large scale at least 5,000 years ago.

The IAMS team is expected to be on the island for about a week, and its prime concern at this stage will be to ascertain whether the methods of exploration which have proved so successful in Israel and southern Spain can be applied to Cyprus where, according to Professor Rothenberg, "the laws of nature can be quite different from anywhere else."
Book review

Huelva report throws new light on Spanish mining history

A major contribution to the understanding of the history and development of mining and metallurgy in the ancient world is provided in a new IAMS publication expected soon (Beno Rothenberg and Antonio-Freijuego Blanco, Studies in Ancient Mining and Metallurgy in South-West Spain).

Basically, the book is a report of the findings of an expedition which explored sites in Spain’s Huelva Province between 1974 and 1978 under a project set up by Seville-Madrid Universities and the Institute for Archaeo-Metallurgical Studies, London. The co-authors — Professor Rothenberg, director of IAMS, and Spain’s leading archaeologist, Professor Blanco, of Madrid University — directed the investigations which were carried out by teams of scientists working all over the central part of the great Iberian pyrite belt.

Their survey, backed up by detailed analytical and metallurgical studies, has provided the foundation for a new history of metal production in this part of the world. Early Copper Age (4th-3rd millennium BC) mines and producing tools, the earliest of Western Europe, were discovered, and Rio Tinto now appears to be the oldest mine in the world still in operation. It was originally opened by indigenous people and worked by them during most of the ancient periods. Contrary to previous supposition, the sophisticated metallurgy of South-West Iberia can now be seen as a local development without any interference from outside.

Case study

The overwhelming importance of metal in the history of the province is indicated by the very scale and extent of the remains since early chalcolithic times, and in this sense Huelva can serve as a model par excellence for the study of metal in history. The authors are at pains to point out that it was no purpose of the project to produce anything like a complete historical and geographical picture of the province. Its aim was more to present a profile of the history of its metal production and its manifold implications for the complex ethnic, social and geopolitical development of the area. This is a first, and in some respects, still rather tentative synthesis, which may have to be amended by future discoveries and excavations of key sites.

However, it should be remembered that previous surveys in the Arabah and Sinai succeeded, by the very accumulation of detailed information from a large number of sites, in producing a valid picture that has not changed in its basic concepts by subsequent excavations.

Huelva’s “new look”, presented here, is therefore painted against a background of factual evidence — on archaeological finds (buildings, pottery, flint implements, coins, tools etc.) and, parallel to it, extractive metallurgical findings (mining technology, smelting products and waste, and the logistics of the operations).

Copper was the first metal used in Iberia, and its production had primitive beginnings: crude trench mines in quartz outcrops, and malachite veins roughly hammered out with grooved pebble-tools fitted with wooden handles.

Earliest yet

The chalcolithic smelting sites in Huelva are the earliest found to date in south-western Europe and, like their contemporaries in the Arabah, the local metallurgists in constructing their hole-in-the-ground bowl furnaces and preparing their charges, achieved almost the optimum principle of copper smelting in use throughout history.

No permanent habitation sites of Copper Age date

continued overleaf
Huelva Report

continued from page 7

were found in the Huelva survey, and a small excavation at Chinflon indicated only temporary dwellings in tents or huts near the mines. However, a group of dolmen, located near Chinflon, strongly suggests that these were the burial places of the first miners and metallurgists of the province.

The arrival of Republican Rome in Huelva did not cause any fundamental change in local mining activities, but the picture changes dramatically with the beginning of the Roman Empire under Augustus. In the early 1st century AD, many new mines were opened up and many active small mines were expanded into large-scale workings.

The famous Roman shaft-and-gallery system was now generally applied and made possible the intensive exploitation of the rich silver and copper ore deposits. It came as a surprise to the explorers to discover that nearly all the presently operating, and most of the old abandoned, copper mines of Huelva had previously been worked in Imperial Roman times and had produced silver as well as copper.

Millions of tons of ore, fluxes and slags and enormous quantities of charcoal were involved in the operations at this time. The Romans had also to cope with the very complicated logistics of feeding their labour force in remote mountainous areas, where few crops grew; drinking water was scarce, and large numbers of miners had to be housed.

All these elements make it difficult to accept the often-propounded view that the Roman mines in southern Spain were run by companies formed by private capitalists or contractors. Such economic systems may have worked during the Republican period, but at the huge industrial sites such as Rio Tinto, it seems far more likely that the operations were soon placed under state administration and technical management.

The book, which is being printed in Spanish as well as in English, is the first in an IAMS series, Metal in History, which aims to publish definitive reports of archaeo-metallurgical research in the major centres of ancient mining and metal production. The present volume is distributed by Thames and Hudson, 30-34 Bloomsbury Street, London W1, price £18.

Chinese excavation

continued from page 5

tons of copper were extracted before the digging was abandoned, for reasons yet to be investigated, though it is probable that it was flooded by a great inrush of water.

Seventeen of the smelting furnaces unearthed belong to the Song Dynasty (960-1279 AD). Bowl furnaces, which show signs of repeated fettling, were used, with hearth of about 37 cm diameter and a tap-slot at their lower part.

A number of other ancient sites in the nearby hills remain to be explored.

The Aims of IAMS

The Institute for Archaeo-Metallurgical Studies was formed as a charitable organization in 1973 to provide support for, and co-ordinate the work of, international research into the development of mining and metallurgy from earliest times.

Its formation was a direct consequence of successful expeditions made in the Near East during the previous 15-20 years by teams of archaeologists, metallurgists and other scientists, who explored the deserts which stretch from the Mediterranean to the Red Sea. Since then, researches have expanded into Western Europe where project teams have been making discoveries which, although not only significant in mining and metallurgical history, but are also providing new and interesting information for others concerned in the study of early cultures and the development of industry and international trade in ancient times.

Trustees

R.J.L. Altham
Professor J.D. Evans
Nigel Lion
J.E. Morera Altsasent (Spain)
Sir Ronald L. Prain OBE
Robert Rice
Professor Beno Rothenberg
Sir Sigmund Sternberg JP
Simon D. Strauss (USA)
Sir Anthony Tuke
Professor R.F. Tylecote
Sir Eric Weiss
Casimir Prinz Wittgenstein (Germany)

Scientific Committee

Professor H.G. Bachmann,
Institute of Archaeology, University of London: J.W. Goethe-Universitat, Frankfurt/M.
Professor Antonio Blanco-Freijerio,
Universidad Complutense Madrid
H.G. Conrad, Dipl. Ing.,
Deutsches Bergbau Museum, Bochum
Professor J.D. Evans
Institute of Archaeology, University of London
M.P. Jones,
Royal School of Mines, Imperial College of Science and Technology, London
Professor Beno Rothenberg,
Institute of Archaeology, University of London
Professor C.T. Shaw,
Royal School of Mines, Imperial College of Science and Technology, London
Professor R.F. Tylecote,
Institute of Archaeology, University of London
Professor P. Wincierz,
Metallgesellschaft AG, Frankfurt/M.

Additional copies of this Newsletter can be obtained from IAMS secretarial office, Institute of Archaeology, University of London, 31-34 Gordon Square, London WC1H 0PY. Telephone: 01-387 6052.
Produced by A.J. Wilson
Printed by Borax Consolidated Limited.